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We develop a formalism to study linearized perturbations around the equilibria of a pure-exchange economy.
With the use of mean-field theory techniques, we derive equations for the flow of products in an economy
driven by heterogeneous preferences and probabilistic interaction between agents. We are able to show that if
the economic agents have static preferences, which are also homogeneous in any of the steady states, the final
wealth distribution is independent of the dynamics of the nonequilibrium theory. In particular, it is completely
determined in terms of the initial conditions and it is independent of the probability, and the network of
interaction between agents. We show that the main effect of the network is to determine the relaxation time via
the usual eigenvalue gap as in random walks on graphs.
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I. INTRODUCTION

There is a growing consensus for the need of a nonequi-
librium theory of economics �1–3�. From a purely theoretical
perspective, one would like to understand how the economy
chooses one of the multitude of possible equilibria. An im-
portant and perhaps more practical question is to determine
which of the equilibrium states are stable. In other words,
given a small perturbation away from such a state, does the
system relaxes back to the same equilibrium, or does it
settles to a completely different state? This is similar to the
so-called landscape problem found in some areas of physics
such as string theory, frustrated magnets, and protein folding.

Constructing a full nonlinear economic theory out of equi-
librium presents many problems. Is price a meaningful con-
cept out of equilibrium? How do we model the interactions
of many heterogeneous agents, etc.? Usually these questions
are tackled by computer simulations using agent-based mod-
els �4�.

In this paper, we consider the simpler case of a pure-
exchange economy with no production. We develop an ana-
lytic formalism to study linearized perturbations around any
equilibrium state. Our approach is probabilistic and we make
heavy use of mean field theory techniques. Before setting up
the perturbation theory, we study the landscape of equilibria
for the pure-exchange economy. Since the dynamics of the
economy should not depend on the units used to measure the
different products, there is a kind of “gauge” symmetry in
the problem �5�. We show that this symmetry induces an
equivalence relation in the landscape of equilibria. In fact, in
the limit of many agents, we show that the set of equivalence
classes of economic equilibria is in one-to-one correspon-
dence with the space of wealth distributions.

One of the main questions that we ask is: what is the
importance of the trading network topology in determining

the final state of the economy? For a related study, see �6�
and references therein. We find that, under some more re-
strictive assumptions on the nature of the possible equilib-
rium states, the final state is completely determined in terms
of the initial conditions of the linearized perturbation. In par-
ticular, it is independent of the details of the nonequilibrium
dynamics and trading network structure. We find that the
main role of the network topology is to determine the relax-
ation time. In our approach, prices are emergent and describe
the relative flow of products between different agents.

The structure of the paper is as follows. In Sec. II, we
study the landscape of equilibria of the pure-exchange
economy. In Sec. III, we describe the probabilistic rules that
drive the dynamics of the system and derive mean-field
theory evolution equations for the linearized perturbations.
In Sec. IV, we state and prove our main result regarding the
universality of the final wealth distribution. Section V con-
tains two examples with specific indices of satisfaction. In
the first example, we deal with homogeneous static prefer-
ences. We show the corresponding relaxation to equilibrium,
and the relation between the relaxation time and the network
topology. In the second example, we study heterogeneous
dynamic preferences. More precisely, we take agents that
update their preferences as they trade. Again, we show how
the network topology affects the relaxation time to equilib-
rium. Conclusions are drawn in Sec. VI.

II. LANDSCAPE OF PURE-EXCHANGE EQUILIBRIA

Our system includes a set of agents A= �� :�
=1,2 , . . . ,m� and a set of products P= �i : i=1,2 , . . . , p�. The
amount of product i owned by agent � is denoted by n�

i . We
work with continuous variables, but the results can also be
recasted in a discrete setting. We shall define an index of
satisfaction �� specifying the preferences for each agent �.
We assume the following basic properties:
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�i� �i�� � 0,

�ii� �i
2�� � 0,

�iii� limn
�
i →� �i�� = � .

The first property means that agents get increasingly sat-
isfied in proportion to their product endowment. The second
property if often called diminishing marginal utility. The
property implies that agents get diminishing satisfaction
while their endowment increases. The third property is a
technical condition: it insures that agents are less willing to
give up the products that they own in smaller quantity. Here
�i is a shorthand notation for the derivative � /�n�

i .
Since we are considering a pure-exchange economy, it

follows that d
dt��n�

i =0, where t denotes time. When agents
have time changing preferences, we have ��� /�t�0. Since
the amount of each product can be measured in arbitrary
units, the dynamics of the economy should be invariant un-
der a transformation

n�
i � �in�

i , where �i � R+. �1�

This defines an equivalence class of all n�
i and ñ�

i �even at
different times� such that n�

i =�iñ�
i . Additionally, we assume

that �i��→ ��i�−1�i��. Let us denote by Mj
i the exchange

rate of the products i and j. Thus, Mj
i ��i�� j�−1Mj

i. Equilib-
rium �or steady state� in a pure-exchange economy is a set of

inventories �n̄�
i :��A , i�P� and exchange rates �M̄ j

i : i , j
�P� that satisfy the maximization conditions

�

��ni����n̄�
i + �ni, n̄�

j − M̄i
j�ni, . . .���ni=0 = 0,

leading to

���i�� − M̄i
j� j����n̄�

= 0. �2�

The solutions of Eq. �2� form equivalence classes under the
transformation �i. Equation �2� implies a consistency condi-
tion,

M̄ j
i = M̄k

i M̄ j
k, �3�

giving then rise to transitive matrices �see �9��. The most
general solution can be written as

n̄�
i

n̄�
j = M̄ j

i�S��M̄�� j
i , �4�

where �S��M̄�� j
i are local and dimensionless functions of the

exchange rates, coming directly from the preferences of the
individual agents, and independent of the inventories. The

values �S��M̄�� j
i must be then left invariant under the trans-

formation in Eq. �1�. Therefore, the solutions described by
Eq. �4� are in the same equivalence class of the solutions of

n̄�
i = �S��M̄ =1�� j

in̄�
j . It follows that the space of equilibria at

any point in time can be mapped to a set �n̄�
1 :��A� for a

specific product, say 1. However, there is still a residual sym-
metry n̄�

i ��n̄�
i . We can use this symmetry to set n1

1=1.
Therefore, the landscapes of the equivalence classes of equi-
libria at any point in time is the manifold �R+�m−1. When m
goes to infinity there is a one-to-one correspondance between
elements of this space and the distributions of wealth. On the
other hand the total nonequilibrium kinematic space is
�R+��m−1��p.

III. NONEQUILIBRIUM DYNAMICS

Before proceeding, we need to make clear what we mean
by “nonequilibrium.” As we mentioned in the previous sec-
tion, one can have time-dependent equilibria. For example,
suppose that agents have time-dependent preferences. We
can then find a one-parameter family of smooth functions

n̄�
i �t� and M̄ j

i�t�, constrained by d
dt��n�

i =0, so that the maxi-
mization conditions in Eq. �2� are obeyed for any t. If we
regard t as a time coordinate, such map would define a time-
dependent pure-exchange economy in equilibrium. Note that
agents are still making exchanges, but these are infinitesimal,
i.e., dn�

i 	dt.
If the economy is out of equilibrium, the maximization

conditions �2� are not obeyed. This means that there is an
excess demand or supply of products. Agents must then bar-
ter between each other in order to find an equilibrium. More-
over, the amount that they will trade will be finite. In what
follows we derive a set of equations to describe the dynamics
of the economy out of equilibrium. This is done under a
minimal set of assumptions which we shall discuss next.

Let n̄�
i �t� be a one-parameter family of equilibrium states

as discussed above. We can always decompose the agents’
inventories as n�

i = n̄�
i +	n�

i , where 	n�
i is a finite deviation

from the particular equilibrium trajectory n̄�
i �t�. Let �n�


ij , be
the finite amount of product i that agent � gets �or gives� in
a trade with product j and agent 
 out of equilibrium. We
assume that �n�


ij 	O�	n�
i �, i.e., the �finite� corrections to

the inventory are of the order of the deviation from equilib-
rium. After a trade with agent 
, agent � updates its inven-
tory as 	n�

i �	n�
i +�n�


ij , 	n�
j �	n�

j +�n�

ji , 	n�

k �	n�
k ,

for k� i , j. By product conservation, we must have �n�

ij

=−�n
�
ij and trivially �n�


ii =0. Finally, under the transforma-
tion given by Eq. �1�, we must have �n�


ij ��i�n�

ij . By

definition, �n�

ij is the amount of product i , j that agents �

and 
 must exchange in order to be in equilibrium with each
other. The precise form of �n�


ij can be calculated near equi-
librium with an expansion in terms of the fluctuations 	n.
Such an expansion is called perturbation theory. For now,
we will work with a general �n�


ij which obeys the basic
properties given above.

In order to properly define a nonequilibrium economic
theory, one must deal with the question of how agents inter-
acts. We will do this in a probabilistic way. In this setting,
time is continuous and when we take an infinitesimal time
interval �t , t+dt�, we assume that dt is so small that any
agent can make at most one barter process. Let ��


ij �t� be the
probability per unit time that agent � will encounter agent 

and make a barter round involving product i and j. The fol-
lowing facts are evident:
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�i� ��

ij � 0,

�ii� ��

ij = �
�

ij ,

�iii� ��

ij = ��


ji ,

�iv� ��

ii = 0,

�v� ���
ij = 0.

If ��

ij �0 for every � ,
�A then the agents can be seen

as located on the nodes of a complete network on m nodes,
i.e., a network in which every two nodes are connected by a
link. On the other hand, we may define ��


ij based directly on
the structure of a chosen network. The network establishes a
constraing in the interaction between agents. Namely, given a
network on m nodes, we can associate the agents to the
nodes and prescribe that ��


ij �0 only if there is a link be-
tween � and 
.

Given an inventory at time t, n�
i �t�, the expected value at

time t+dt of the nonequilibrium fluctuations, provided the
information at time t, is

Et�	n�
i �t + dt�� = 
1 − dt�

j,

��


ij �t��	n�
i �t�

+ dt�
j,


��

ij �t��	n�

i �t� + �n�

ij �t�� . �5�

The first term comes from the probability of no interactions;
the second term is the contribution from the trading interac-
tions. Taking an expectation value of Eq. �5� at time t on both
sides, we obtain an expression for the unconditional expec-
tations, which we denote by � · 

d

dt
�	n�

i �t� = �
j,


��

ij ��n�


ij �t� . �6�

We can always write the fluctuations in terms of a scale
invariant variable x�

i , i.e., 	n�
i � n̄�

i x�
i . The evolution equa-

tions for the scale invariant perturbations take the form


 d

dt
+

1

n̄�
i

dn̄�
i

dt
��x�

i �t� =
1

n̄�
i �

j,

��


ij ��n�

ij �t� . �7�

In order to study perturbations in more detail, we need an
explicit expression for the solution of the bartering problem
�n�


ij and for the probabilities ��

ij . It turns out that one can

find an explicit expression for �n�

ij , when agents are as-

sumed to be in a near-equilibrium state. This was given in
�10�. We quote the result here

�n�

ij 	 L��i	�� j� − �i�� j	�� , �8�

and

�n�

ji = − ��i�/� j���n�


ij ; �9�

L=−�� j����i
2��� j

2��2+� j
2���i

2��2−2�i�� j��i� j��−1, �
ª��+�
, and 	�ª��−�
. At equilibrium, we know that

M̄ j
i =�i�� /� j��. Therefore,

�n�

ij = L��i	�� j� − �i�� j	��

= L��i	�� j��M̄i
jM̄ j

i − 1�� = 0,

as expected.
A further comment is useful. In general, we expect per-

turbation theory to be valid only if �n�
i /n�

i 1. However,
one always needs to ensure that an initially small perturba-
tion does not grow out of control. This stability analysis will
be discussed later in the paper. It is important to point out
that even with a proper stability analysis, the absolute mag-
nitude of a perturbation can only be checked by going to the
next order perturbation theory. We do not pursue this direc-
tion here, in fact, we assume that the perturbation is small
and we prove that our models are stable.

IV. UNIVERSALITY THEOREM

In Sec. II, we showed that the only relevant scale invari-
ant quantity in equilibrium is the wealth distribution. Here
we will show that under certain more restrictive assumptions
about the index of satisfaction, the final wealth distribution
can be found in terms of the initial conditions of the pertur-
bations, and it is independent on the details of the nonequi-
librium dynamics. We show that this only happens if the
following conditions are met: in any of the possible equilib-
ria, the index of satisfaction is �i� time-independent, i.e.,
��t���n̄=0; �ii� the same for all agents. These are necessary
conditions for isolating the effects of the network that deter-
mines interactions. However, we leave open the possibility
that, while out of equilibrium, the index of satisfaction might
be time dependent and agents might have different prefer-
ences. In fact, in Sec. V we will give a particular example of
this case.

The key to our result, can be traced to the fact that under
the conditions given above, there are extra conserved quan-
tities arising from Eq. �6�. Under �i� and �ii�, the solution to
the equilibrium equation must have the form,

n̄�
i

n̄�
j = M̄ j

i �i�M̄�

� j�M̄�
, �10�

for any equilibrium state. Here we have written �S�� j
i
ªSj

i

��i /� j, since �ii�. The fact that we can decompose Sj
i as

above, follows from the consistency relations that Sj
i must

obey �see Eqs. �3� and �4��. The functions �i are assumed to
be time independent from �i�, therefore the possible equilib-
ria will also be time independent. We have already seen that
product number is conserved in the barter process. Thus,
from Eq. �6� we have d

dt��n̄�
i x�

i =0. However, there are more
subtle conservation laws not evident from Eq. �6�, but arising
in the linearized approximation. Under this approximation
we can write

�n�

ji 	 − �M̄i

j + O�	���n�

ij . �11�

That is, agents are trading at approximately the same ex-
change rate as in equilibrium. Using Eqs. �10� in Eq. �11�
one can easily show that
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�i�M̄��n�

ij

n̄�
i 	 −

� j�M̄��n�

ji

n̄�
j . �12�

By Eq. �12� in Eq. �6� it follows that

d

dt
�

i

�ix�
i = 0. �13�

The next step is to find the asymptotic prices at t→�. Of
course, we need to assume that the system reaches some
other equilibrium state. Hence,

Mj
i���

�i�M����
� j�M����

=
n�

i ���
n�

j ���
=

n̄�
i �1 + x�

i ����
n̄�

j �1 + x�
j ����

. �14�

Note that in writing Eq. �14� we have assumed that the form
of �i as a function of prices is the same at t→� that at t
=0. This follows from �i�. Summing over A, under the lin-
earized approximation, we get

Mj
i���

�i�M����
� j�M����

	 M̄ j
i �i�M̄�

� j�M̄�

1 +

Ji

n̄i −
Jj

n̄j� , �15�

where n̄i= 1
m��n̄�

i and Ji= 1
m��n̄�

i x�
i . Note that Ji are con-

served quantities, and hence are given in terms of the initial
conditions of the perturbations. One can then use Eq. �15� to
solve for the final prices in terms of the equilibrium state we
are expanding around and the initial conditions for the per-
turbations. We are now in the position to deal with the final
wealth distribution. In units of product i, we have

W�
i ��� = �

k

Mk
i ���n�

k ���

	 �
k

Mk
i ���n̄�

k + �
k

M̄k
i n̄�

k x�
k ���

= �
k

Mk
i ���n̄�

k +
pn̄�

i

�i�M̄�
X�,

where X�ª
1
p�i=1

p �ix�
i . We note that this is also a conserved

quantity, and so it is given by its initial value. Since Mk
i ���

can be determined from Eq. �15� in terms of the initial per-
turbations, we have the following result:

Consider a pure-exchange economy, with the space for all
equivalence classes of equilibria determined by the scale
transformation in Eq. �1�. Let us assume that the index of
satisfaction at equilibrium is �i� time independent and �ii� the
same for all agents. Moreover, let us assume that given an
initial nonequilibrium linearized fluctuation, the system will
go back to some equilibrium state at time t→�. Thus, the
wealth distribution is completely determined in terms of the
initial conditions of the perturbation and it is independent on
the nonequilibrium dynamics. In particular, it is independent
of the probabilities and the network of interaction between
agents.

As a special case, consider an homogeneous equilibrium
state n̄�

i � n̄i. In this case, all agents have the same wealth,

W̄i, say. For simplicity, assume that �i=1. Then, given an
initial perturbation 	n�

i � n̄ix�
i , the final wealth of the

economy is given by,

W�
i ��� 	 W̄i
1 +

Ji

n̄i −
Jj

n̄j + X��
= W̄i
1 +

1

m
�
�

�x�
i �0� − x�

j �0�� +
1

p
�

i

x�
i �0�� .

�16�

In particular, we see that since X� is conserved, the final
equilibrium state of the economy will generically be nonho-
mogeneous. However, note that if X�=X
 for every � and 
,
the final wealth distribution will again be homogeneous, and

thus related by a scale transformation to W̄i.

V. EXAMPLES

A. Homogeneous static preferences

We discuss here a particular example to clarify the role of
the probabilities ��


ij , the network of interaction, and the sta-
bility of the nonequilibrium perturbations. Agents are asso-
ciated to the nodes of a fixed network. Each agent can inter-
act with exactly d other fixed agents, i.e., the network is
modeled by a d-regular graph. Let A be the adjacency matrix
of the network: A�
=1 if ��


ij �0 for at least two products i
and j; A�
=0, otherwise. When the probability of trading
two specific products is uniform, we have ��


ij =A�
 /d�p
−1�. We study in the following case of homogeneous time-
independent index of satisfaction:

�� = �
i

log n�
i . �17�

This index trivially satisfies the assumptions �i�–�iii�. Addi-
tionally, the index scales in the correct way according to the
rule �i��→ ��i�−1�i��. Therefore, the final wealth distribu-
tion will be independent on the dynamics. In this simple
example, one can obtain an analytical solution to the barter-
ing problem: �n�


i = �n�
j n


i −n�
i n


j � / �2�n�
j +n


j ��. Next, we
note that the equilibrium Eqs. �2� for this system reduce to

M̄ j
i = n̄�

i / n̄�
j . It is then easy to see from Eqs. �8� and �9� that

�n�

ij / n̄�

i 	 1
4 �x�

j −x�
i −x


j +x

i �. Therefore, the equation for the

scale invariant perturbations becomes

d

dt
�x�

i  =
1

4d�p − 1��
,j
A�
��x�

j  − �x�
i  − �x


j  + �x

i � .

�18�

These equations can be seen as the direct analog of the
wealth dynamic equations proposed in �7�. Therefore, our
perturbation theory can be seen as providing a microeco-
nomic foundation to the results of �7�. However, we do not
include a stochastic source term, which would keep the sys-
tem out of equilibrium. The presence of such a term can be
directly linked to the fat-tailed wealth distribution obtained
in �7�.

We can readily see from Eq. �18� the conserved quantities
found in the last section: d

dt��x�
i =0 and d

dt�ix�
i =0. Hence,

the final wealth distribution is given by Eq. �16�. We are
interested in showing that there are no instabilities and so the
economy indeed equilibrates. The role of the network is to
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determine the convergence rate toward equilibrium, in evi-
dent analogy with the notion of mixing time for random
walks on graphs �see �8��. Let us write Eq. �18� in vector
notation as, d

dtx� =� ·x�, where x� = �x1
1 , . . . ,xN

1 ,x1
2 , . . .xN

2 , . . .�T

and

� =
1

4�p − 1�
�Jp − pIp� � �Im − T� ,

being In the m�m identity matrix, Jp the p� p all-one ma-
trix and TªA�
 /d. The eigenvalues of � are ��

i = 1
4�p−1� ��

i

− p��1−���, where �i� �0, p� and �� are the eigenvalues of
Jp and T, respectively. It follows that there are m steady
states associated with ��

1 =0. These correspond to the con-
served quantities �ix�

i . The remaining eigenvalues are ��
i =

− p
4�p−1� �1−���. Because T is doubly stochastic, ��� �−1,1�

and �1=1. So, ��
i �0 and there is no instability. The rate of

convergence is determined by the eigenvalue gap ��1−�2� of
the matrix T. The network does not affect the wealth distri-
bution but it gives the rate of convergence toward equilib-
rium. As expected, the larger the eigenvalue gap, the faster is
the convergence. Graphs with good expansion properties are
then associated with fast relaxation. Figure 1 gives an ex-
ample for the complete graph and the cycle graph on six
vertices using the same initial conditions. The numerical
simulation is consistent with the mean field theory. The
simulations are obtained taking Eq. �18� in discrete time.
Moreover, we replace the matrix A�
 /d by a random matrix
which chooses one pair of agents to interact in every time
step. The pair is chosen from a uniform random distribution.

B. Heterogeneous dynamic preferences

It is worth considering an example with a slightly more
complicated index of satisfaction,

�� = log � j
��M�� j

in�
j ��, �19�

where 0���1 is a fixed but arbitary constant. The matrix
M� represents a particular preference of the agent. It can be
interpreted as an opinion about the exchange rates. Different

agents might have different opinions. We assume that M�

obeys the usual consistency conditions. Therefore, the choice
of index i in Eq. �19� is arbitrary. We will build a model
where agents can learn the “market” exchange rates when
they barter with other agents. This means, they will ulti-

mately converge to some equilibrium prices M̄. Therefore,
for any of such equilibria, the preferences will be of the form

�̄� = log � j
�M̄ j

in̄�
j ��.

One can easily show, from Eqs. �2�, that thee space of equi-

libria of this model is the same as in the previous one: M̄ j
i

= n̄�
i / n̄�

j . Here we will expand, as in the previous case,
around an homogeneous economy with n̄�

i = n̄i. Note that
even though in this model agents have time-dependent pref-
erences out of equilibrium, they all converge to homoge-
neous preferences in equilibrium. This means that this model
obeys the simplifying assumptions of Sec. II, and hence the
final wealth distribution is independent of the nonequilibrium
dynamics.

Now we need to provide a model of how the agents learn
the prices. We assume that, when two agents � and 
 find
each other and make a trade, they update their respective
matrices M� and M
 as

�M�� j
i = �M
� j

i = −
�n�


ij

�n�

ji 	

� j��� + �
�
�i��� + �
�

, �20�

for all i , j�P. We have used Eqs. �8� and �9�. This way of
updating prices makes sure that the exchange rates M� al-
ways obey the consistency condition �see Eq. �3��. Moreover,
one could interpret such updating as an exchange of infor-
mation between both agents: even though agents traded only
two products, they “found out” about each other’s prices.
The expectation of �’s internal matrix M� at the next time
step is

Et��M�� j
i�t + dt�� = 
1 − dt�




T�
�t���M�� j
i�t�

+ dt�



T�
�t�
� j��� + �
�
�i��� + �
�

. �21�

We have used the fact that the total probability per unit time
of an encounter between agents � and 
 is given by � j��


ij

=T�
. Taking expectations on both sides of Eq. �21� we get,

d

dt
��M�� j

i�t� = − ��M�� j
i�t� + �




T�
�t�� � j��� + �
�
�i��� + �
�� .

�22�

This can be seen as the evolution equation for the agent’s
preferences.

We are now ready to work out the evolution equations for
the scale invariant perturbations. Due to the consistency con-
dition, we can always consider only the �M��i

1 components
of the prices. We can then define the following scale invari-
ant variables for the price perturbations:

0 10 20 30 40 50 60

�0.10

�0.05

0.00

0.05

0.10

t

x Α1

FIG. 1. �Color online� The dashed and solid curves represent the
predicted fluctuations in terms of the scale invariant variable x�

i as a
function of time t for agents on the complete graph and the cycle
graph on six vertices, respectively. Since the eigenvalue gap for the
complete graph is larger than the one for the cycle, the rate of
converge is higher for the complete graph. The spiked curves are
obtained by a numerical simulation. This is consistent with the
mean-field theory.
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y�
i
ª

�M��i
1�t� − M̄i

1

M̄i
1

. �23�

One finds that for the utility in Eq. �19� and for the homo-
geneous background, the amount of products traded is

�n�

ij

n̄i =
1

4
�x�

j − x

j − x�

i + x

i +

�

1 − �
�y�

i − y

i − y�

j + y

j �� ,

�24�

where it is understood that y�
1 �0. From Eq. �7�, we get the

expression for the perturbation in inventory

d

dt
�x�

i  =
1

4�p − 1���,

T�
��x�

i  − �x

j  − �x�

i  + �x

i 

+
�

1 − �
��y�

i  − �y

j  − �y�

i  + �y

i �� . �25�

Next we derive the equation for the perturbations in the in-
ternal prices of the agents. In order to do this, we need the
following result:

�i�

� j�
	 1 +

1

2
�1 − ���x�

j + x

j − x�

i − x

i �

+
1

2
��y�

i + y

i − y�

j − y

j � , �26�

where we have set M̄ j
i =1 without any loss of generality. We

can now use Eq. �26� in Eq. �22� to get an expression for the
price perturbations

d

dt
�y�

i  = − �y�
i  +

1

2�



T�
��1 − ����x�
1 + �x


1 − �x�
i  − �x


i �

+ ���y�
i  + �y


i �� , �27�

where, again, y�
1 �0. We can now analyze Eqs. �25� and �27�

in order to prove the stability of the system. It is useful to
diagonalize the matrix T, as in the previous example. Recall
that the price perturbation y�

1 �0, since this is the perturba-
tion of �M��1

1=1. However, we can just include y�
1 as a spu-

rious variable which will be conserved, i.e.,
d�y�

1
dt =0. One can

then show that Eqs. �25� and �27� can be written in matrix
form as d

dtX� =� ·X� , where X� = �x1
1 , . . .xn

1 ,x1
2 , . . . ,xn

p ,
y1

1 , . . . ,yn
1 ,y1

2 , . . . ,yn
p�T and

� = � 1

4�p − 1�
a1 −

�

4�p − 1��1 − ��
a1

a2 a3
� .

Here Rp is the p� p matrix with entries �Rp�ij =	 j,1. More-
over,

a1 = �Jp − pIp� � �In − T� ,

a2 = �1 − ���Rp − Ip�/2 � �In + T� ,

a3 = �Rp − Ip� � �In − �In + T��/2� .

When we take two products �p=2�, the two nonzero eigen-
values of � are

�� =
1

4
�− 3 + �� + � + � � ���� + � + � − 3�2 + 8�� − 1�� ,

�28�

with �� �0,1� and �� �−1,1�. It is straightforward to see
that the real part of both eigenvalues is negative or zero. If
we fix � then the eigenvalue gap still determines the conver-
gence rate as in the case of homogeneous preferences.

In Fig. 2, we compare the dynamics of this model with the
simpler one of the previous section. We take the same initial
conditions for the scale invariant perturbations and fix the
network to be the complete graph. We see that, as expected,
the final state is the same for both models. However, for the
changing preferences model, there are large oscillations due
to the fact that the eigenvalues given in Eq. �28� are com-
plex. Moreover, in the limit �→0 �wealth maximizers�, these
oscillations dominate and the system never equilibrates.

VI. CONCLUSIONS

In this paper, we have introduced a theory of linearized
perturbations around a pure-exchange economy. Our formal-
ism is given in terms of a general index of satisfaction and
the probabilities of agents interacting on a network. We have
shown that, if agents have static preferences, which are also
homogeneous in any of the steady states, the final wealth
distribution is independent of the dynamics of the nonequi-
librium theory. In particular, it is completely determined in
terms of the initial conditions and it is independent of the
probability and the network of interaction between agents.
We have shown that the main effect of the network is to
determine the relaxation time to equilibrium. We gave two
examples where the relaxation times can be computed ana-
lytically. Moreover, we showed the agreement between the
mean field theory technique and numerical simulations.

This work can be extended in a number of directions.
First, it would be interesting to consider agents that have
random changing preferences or can speculate on exchange

5 10 15 20 25 30

�0.10

�0.05

0.00

0.05

0.10

0.15

t

x Α1

FIG. 2. �Color online� Evolution of the scale invariant variable
x�

1 as a function of time for agents on the complete graph with six
vertices. The solid lines are for the example with homogeneous
unchanging preferences, Eq. �18�. The dashed lines are for the case
of heterogeneous dynamic preferences, Eqs. �25� and �27�. We have
taken �=0.9 for the heterogeneous case.
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rates. Some simulations of this kind were conducted in �10�
in the context of a centralized market. These speculations can
lead to stochastic terms analog to the ones proposed in �7�.
Finally, we have only considered agents making barter ex-
changes at a fixed time. An important component of the
economy is that agents are able to make exchanges at differ-
ent times. That is, we have contingency claims. It would be
interesting to set up a similar perturbation theory involving
such claims, and study the stability of the system.

We have seen that the final wealth distribution depends on
the initial conditions of the nonequilibrium perturbation.
What kind of mechanism sets these conditions? The answer
to this question is generally difficult. However, one can drive
the fluctuations out of equilibrium by adding an extra sto-
chastic term to Eq. �6�. Such an extension of our model is
very similar to the one studied in �7�. As it was shown in this
reference, the model tends to produce a power-law distribu-
tion of wealth, as it is observed in the real world. The de-
tailed extension of our model using stochastic fluctuations, in
line with �7�, is beyond the scope of this paper, but it remains

as an interesting direction for future research.
The fact that in certain cases the wealth distribution is

independent of the details of the dynamics out of equilibrium
is good news. Indeed, this gives hope to a better understand-
ing of the economy without having to know all the details of
the actual driving processes.
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